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ABSTRACT 
This study develops a risk policy in Airline Revenue Management (ARM). ARM related to  
airline demand management policies to estimate and classify the various requests of pricing 
and capacity control. We made a model of the optimal policy value at risk (VaR) for two 
parallel flights owned by the same airline. The two parallel flights is a condition which an 
airline operates two flights in the same departure date with different time schedule. VaR is 
the worst possible losses under normal market conditions during the some period and 
certain confidence level. We specifically discuss the revenue risk policy for joint dynamic 
seat allocation problem including operational risks such as  seat allocation risk. Moreover, 
in this proposed model, we also deal with passenger choice behaviour. We attempt to 
optimize VaR in determining seat allocation policies of both flight such as (i) improving 
revenue targets, (ii) choosing the best result for a given confidence level. To implement the 
model, we develop a dynamic programming algorithm for a set of expected revenues. We 
conduct some numerical experiments to show the behaviour of this model. 
 
Keywords:  Airline Revenue Management, Paralellel Flights, Seat Allocation Risk, Value 
at Risk 
 
 

1 INTRODUCTION 
Revenue management is also known as yield management. According to Talluri and Van 

Ryzin (2004) revenue management is related with demand management policies to estimate and 
classify the various request for pricing and capacity control as well as the entire system to make 
them. The primary goal of revenue management is to maximize revenue. However the problem in 
revenue management is when a request occur at this time, the request should be accepted now with 
the current price, or retained in anticipation of future price increases.  

Revenue management widely adopted by a number of both manufacturing and service 
industries such as retail, automobile industry, cement industry, airlines and others. Application of 
revenue management in the airline known as Airline Revenue Management (ARM). ARM is often 
an important concern since its application used to anticipate demand uncertainty problems in the 
future due to excess inventory may not be stored and used in the next period, while a seats 
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capacity offered always fixed and the fixed costs is high but marginal costs is low. Luo Li and Ji-
Hua (2007) explains an airlines who implementing revenue management increase their revenue 
from 2% to 8%. American Airlines defines revenue management is maximize the revenue earned 
from selling seat inventory to the passenger in a timely manner. In addition, according to 
Dunleavy  and Philiphs (2009) the purpose of revenue management is maximize total revenue 
obtained from total income of all passengers in accordance with the price of each class to the 
number of booking request in a particular class period. 

Airline sells a ticket at different prices with the goal to maximize total revenue because the 
products services offered is a seat which has characteristics such as perishable products, namely 
products that have no residual value if it passes a certain period. That means, airlines will lost the 
opportunity revenue if the tickets were not sold until the flight depart. Different prices of tickets 
(fare class) will form a different sub-classes in the same flight and received the same services. 
Multi-fare classes are not a problem for customers as long as they are willing to pay for the tickets. 

ARM is specifically discussed by several researchers. Subramanian et al., (1999) which 
discusses the amount of income over the period of reservations on a single flight condition. Lee 
and Hersh (1993) which split the period into discrete time where most widely one event will occur 
in each period. Luo Li and Ji-hua (2007) developed a model under competition using continuous 
time. Some papers discuss the situation where an airline may open more than one flight in the same 
departure date with different time schedule called parallel flights. Xiao et al., (2008) discuss the 
development of a model for parallel flight on dynamic pricing approach. Zhang and Cooper (2005) 
discuss the problems of dynamic seat allocation on parallel flight at the same airline. Chen et al., 
(2010) and Rusdiansyah et al. (2010) develop a model to optimize seat allocation on two parallel 
flight.  

Various models from previous research about revenue management can be grouped in two 
categories: static models and dynamic models. The core of the static models is seek optimization 
of the number of seats offered at different prices sequentially ordered. Research on static models 
include Littlewood (1972) which set two different price classes in the same flight. In addition, 
Belobaba (1989) developed a study on multiple fare classes. While the dynamic model is a 
booking request in all fare classes througout the booking periode and dynamically decide whether 
the booking request is accepted or not. Dynamic models calculate the maximum expected revenue 
optimization for airlines. Research on the dynamic model have been carried out by researchers, 
some of which are Subramanian et al., (1999), Xiao et al., (2008), Chen et al., (2010). Revenue 
management that observe risks was first performed by Feng and Xiao (1999) who consider risks in 
term of sales due to price changes. Furthermore, Feng and Xiao (2008) integrate expectation utility 
theory into revenue management to support risk decisions. Koenig and Meissner (2011a) minimize 
the risk of failure with a set of target revenue values. Koenig and Meissner (2011b) calculate the 
optimal policy using standard deviation and value at risk (VaR). Jorion (2006) define VaR is a risk 
measurement that commonly used in finance to calculates the risk for a given probability level 
which is often referred to as confidence level. 

However, none of previous paper discuss dynamic programming with the optimal policy 
value at risk (VaR) for two parallel flights owned by the same airline. In this study used revenue 
risk policy for joint dynamic seat allocation problem including operational risks such as seat 
allocation risk. Seat allocation control approach provide different seat proportion on each fare 
classes. Moreover, in this study also deal with passenger choice behavior and attempt to optimize 
VaR in determining seat allocation policies of both flights. Variables that changed for sensitivity 
analysis is the number of entities (the passengers), the proportion of flexible passenger, seat 
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allocation for cheaper ticket prices, revenue targets and confidence level to produce the maximum 
expected revenue with the minimum risk. 
 
2 MODEL DESCRIPTIONS 

In this study, we discuss value-at-risk optimal policy model for revenue management 
problem on parallel flights that notice the passengers behavior in choosing flight schedules to 
maximize total revenue. The goal of this problem is minimize risk policy to obtain maximum total 
revenue. We develop a dynamic programming model to optimize value-at-risk policy by using a 
target value as practiced by Koenig and Meissner (2011a) and Koenig and Meissner (2011b) with 
adding a model of two parallel flight and passenger choice behavior as practiced by Chen et al. 
(2010). Two parallel flights according to Rusdiansyah et al. (2010) is two flights that serving a 
same route in different departure time. For example two parallel flights A and B, A has a 
scheduled flight departure earlier than B (A departure at 06.00 and B at 07.00). This study also 
calculates risk in certain given revenue targets.  

Two parallel flight which opened on a different schedule with the same destination and 
offers a variety of classes with different ticket prices make the passengers have freedom to choose 
the flight schedule as their needs. This study uses a discrete time model approach as developed by 
Chen et al. (2010), Koenig and Meissner (2011a) and Koenig and Meissner(2011b). Optimal risk 
is use to obtain maximum total expected revenue of the two parallel flights. 
2.1 Model Formulation 

Seat capacity is denoted by ܥ where ݇ indicate the type of flight. ܥଵ is the seat capacity 
for flight 1 and ܥଶ seat capacity for flight 2. Remaining seats in time period ݊ are given by ܿଵ and 
ܿଶ. Each flight contained ݉ fare class and expressed by ݅ where ݅ = 1,2, . . ,݉.  

 . denoted as net income of class i on flight 1 and ܴ is net income of class i  on flight 2ݎ
Generally ݎଵ > ଶݎ > ଷݎ > ⋯ >  dan ܴଵݎ > ܴଶ > ܴଷ > ⋯ > ܴ. It shows fare class 1 is greater 
than the class 2, 3, until class m. The highest price class called high fare while the lower price is 
low fare. This research does not develop overbooking. Decision of booking request on passengers 
type j in fare class i would be processed to be accepted or rejected in each flight 1 and 2. 
 

Table  1. Notation models 
Notation Description 

݉ Amount of fare class 
 Net income in the first flight in fare class i ݅ݎ
Ri Net income in the second flight in fare class i 
݆ Type of passengers 
  The probability of j request for the fare class i in period n 
݇ Flight number, ݇ = 1,2 
  Seat capacity on the flight kܥ
  The number of booking request on the flight kݔ
N Booking period 
ܺே Target revenue N period 

ேܸ
గ൫(ܿ1, ܿ2, ݅),ܺே൯ Minimum risk of failing target X for c remaining seats in fare class i 

ܹ
గ∗(ܿ1,  ) Transformation value of V୬ with reducing fare class iݔ,2ܿ

ܿ Remaining seats capacity on the flight k 
 Confidence level ߙ

ܸ@ܴఈ Value at risk  in confidence level α 
U Revenue  
  Fare class on the k flight in the fare class iܨ
ܽ Indicator function ܽ = 0,1 
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2.2 Determine Discrete Time 

This research use a discrete time approach as developed by Subramanian et al. (1999). 
Discrete time will split booking request into smaller time period which only one event can occur. 
The possible events are: (1) customer arrival; (2) no any event occurred (null event) were 
represented by the probability of customer arrival in the fare class 0. The selling horizon for flight 
1 and 2 is identical, written by [0,T]. Each smaller period declared by n, also called the stage. If N 
is the total number of decision periods, the period written backward from N to 0 which is the 
initial period and 0 the last period or departure, so the decision period declared by ݊ = ܰ,ܰ −
1, … ,1,0.  

 
2.3 Determine Event in Each Decision Period 
The possible events may occur are: 
(1) Customer arrival of type j with booking request on fare class i, i=1,2,...,m; 

When the booking request occur, the airline will classify the type of passenger and decide to 
accept or reject the request on i fare class. The airline does not earn any income if the request 
rejected, otherwise if it accepted the airline earn revenue by Fi > 0. While type 3 of the passenger 
occur, the airline will determine which flight will be accommodate the request.  
 
During the selling horizon, the three types of passengers can appear then the demand probability 
for fare class i with the passengers type j as follows: 

(ଵ + ଶ + ଷ )


ୀଵ

≤ 1 

(2) No any event occurred (null event) 
Null event represented by the probability of passenger on fare class 0. The probability of no 
request for any type is given by ଵ,

 = ଶ,
 = ଷ,

  and the sum of them will not more than 1. We 
use the following equation: 

ଵ,
 + ଶ,

 + ଷ,
 ≤ 1 

With the both possible events, probability at each stage can be formulated as follows: 

(ଵ + ଶ + ଷ )


ୀ

≤ 1 … … … . . (1) 

 
2.4 Determine Probability of Failing Target Revenue 

Applying the model developed by Koenig and Meissner (2011a) and based on the 
concept of Chen et al. (2010) to our model, we get the probability of failing target revenue two 
parallel flight as follows: 

 

ܸ
గ∗൫(ܿ1, ܿ2, ݅), ൯ݔ = ൜1		ݔ > 0

ݔ	0 ≤ 0  

ܸ
గ∗൫(ܿ1, ܿ2, ݅), ൯ݔ = 

min
∈(,ଵ)

{൮ଵ,
ିଵ



ୀ
ܸିଵ
గ∗ ൫(ܿ1 − ܽ, ܿ2, ݆), ݔ −  ଵ൯൲ܨܽ
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+൮ଶ,
ିଵ



ୀ
ܸିଵ
గ∗ ൫(ܿ1, ܿ2 − ܽ, ݔ,(݆ −  ଶ൯൲ܨܽ

+ቌଷ,
ିଵ



ୀ

min൛ ܸିଵ
గ∗ ൫(ܿ1− ܽ, ܿ2, ݔ,(݆ − ;ଵ൯ܨܽ ܸିଵ

గ∗ ൫(ܿ1, ܿ2 − ܽ, ݔ,(݆ − {ଶ൯ൟቍܨܽ … . . (2) 

Refers to Koenig and Meissner (2011a), the formulation of dynamic programming in 
Equation 2 is require transformation to reduce the scope of the state . Transformation is denoted 
by ܶ(ܿ1,ܿ2,ݔ) ≔ ∑ ൫ଵ,

 + ଶ,
 + ଷ,

 ൯
ୀ ܸ(ܿ1, ܿ2, ,The value function ܹ(ܿ1 .(ݔ,݅ (ݔ,2ܿ ≔

ܶ(ܿ1, (ݔ,2ܿ ܸ(ܿ1, ܿ2,  stand for reduce the scope of fare class i. So the equation 2 is (ݔ,݅
transformed as: 

ܹ
గ∗൫(ܿ1, ܿ2), ൯ݔ = ൜1		ݔ > 0

ݔ	0 ≤ 0  

ܹ
గ∗(ܿ1, ܿ2, (ݔ = ܶ(ܿ1, ܿ2, (ݔ ܸ

గ∗(ܿ1, ܿ2, ݅,  (ݔ

	= ൫ଵ,
 + ଶ,

 + ଷ,
 ൯



ୀ

min
∈

൛ ܹିଵ
గ∗ ൫ܿ1 − ܽ, ܿ2− ܽ, ݔ − …൯ൟܨܽ . . (3) 

 
2.5 Develop value-at-risk (VaR) for a Given Confidence Level 

Based on a model developed by Koenig and Meissner (2011b) by adding two parallel 
flight condition and pay attention to the passengers behavior, the new equation is: 

ܸ@ܴఈగ ቌݎ



ୀ

ቍ = infቐݑ:൫ଵ,
 + ଶ,

 + ଷ,
 ൯



ୀ

ቌݎ ≤ ݑ


ୀ

ቍ ≥ ቑߙ 	= inf{ݑ: ܹ
గ(ܿ1, (ݑ,2ܿ ≥ {ߙ … (4) 

 
3 NUMERICAL EXPERIMENT 

We evaluated the proposed computation method by the similar model introduced by 
Koenig and Meissner (2011a). In the model performed several numerical experiments and 
calculate every stage and state. The optimal output at n-1 will be an input on the next stage n. In 
case 1, we examine models to changes value of target revenue with the parameters of each flight 
are identical. Case 2, we also examine models to changes value of target revenue but the 
parameters of each flight are different. And the third case, we examine models againts the risk of 
failure to achieve expected revenue from equations developed by Chen et al., (2010). 

 
Case 1 

In this case, we use initial parameters which can be seen on table 2 and 3. Total period 
used in this case is N = 30. Fare class and the probability for both flights are equal. Value of target 
revenue is altered at $1200, $1220, $1400 and $1500.  

 
Table 2. Fare class i and the probability of request from n=1 to n=30 in case 1 

 

 
Source: Koenig and Meissner (2011a) 

 

p1 p2 p3 p1 p2 p3 p1 p2 p3 p1 p2 p3 p1 p2 p3 p1 p2 p3
0 0 0 0,33   0,33   0,33   0,23   0,23   0,23   0,13   0,13   0,13   0,20   0,20   0,20   0,20   0,20   0,20   0,19   0,19   0,19   
1 200 200 -     -     -     0,05   0,05   0,05   0,05   0,05   0,05   0,03   0,03   0,03   0,02   0,02   0,02   0,03   0,03   0,03   
2 150 150 -     -     -     0,05   0,05   0,05   0,05   0,05   0,05   0,03   0,03   0,03   0,02   0,02   0,02   0,03   0,03   0,03   
3 120 120 -     -     -     -     -     -     0,05   0,05   0,05   0,03   0,03   0,03   0,05   0,05   0,05   0,05   0,05   0,05   
4 80 80 -     -     -     -     -     -     0,05   0,05   0,05   0,03   0,03   0,03   0,05   0,05   0,05   0,05   0,05   0,05   

12<=n<=18 19<=n<=25 26<=n<=30
class i F1(i) F2(i)

n=0 1<=n<=4 5<=n<=11
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Table 3. Parameters 
 

 
 

The probability at the last period n = 0 are zero for all classes on flight F1 (i) and F2 (i), 
where i = 1,2, ... 4. However, when the artificial class 0, the probability are one. The results of 
case 1 as follows: 

Table 4.Result of ܹ
గ∗on case 1 

 
Target value XN 1200 1220 1400 1500 

ࢃ
 ∗ 0.088 0.101 0.336 0.529࣊

 
 

In the table above, it can be seen that the higher the revenue target, the greater the 
probability of failure to reach the target value. The values ܸ@ܴఈ  dan ܹ

గ∗ represent a probability. 
The results of this case, there is no ܸ@ܴଵ%  but the approach is ܸ@ܴଵ,ଵ%  on target value $1220. 
By using 1000 times simulation, ࡾ@ࢂ% with target revenue $1200 can be seen in the following 
graph: 

 
Figure 1. Graph ܸ@ܴଵ%  in case 1 

 
The histogram shows minimum value of revenue that occur is equal $990 and maximum of 

$1900. At the confidence level α = 10% obtained value of $ 1,240. Every generate simulations, the 
value can be different from each other with a standard deviation of 145. 
 
Case 2 

In this case, we use initial parameters which can be seen on table 5. Total period used in 
this case is N = 30. Fare class and the probability for both flights are equal. Value of target 
revenue is altered at $1200, $1220, $1300, $1400 and $1500.  

 
 
 
 

Parameters Value
N 30
m 4
Capacity 1 5
Capacity 2 5
XN 1200
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Table 5. Fare class i and the probability of request from n=1 to n=30 in case 2 
 

 
 
The results of case 1 as follows: 

Table 6.Result of ܹ
గ∗on case 2 

 
Target value XN 1200 1220 1300 1400 1500 

ࢃ
 ∗ 0.090 0.108 0.210 0.404 0.654࣊

 
Case 2 also using 1000 times simulation and target revenue was set to $1400, ܸ@ܴଵ% with 

target revenue can be seen in the following graph: 
 

 
Figure 2. Graph ܸ@ܴଵ%  in case 2 

 
The histogram on picture 2 shows minimum value of revenue that occur is equal $1,250 

and maximum of $1,950. At the confidence level α = 10% obtained value of $ 1,450. Every 
generate simulations, the value can be different from each other with a standard deviation of 
122.7. 
 
Case 3 
In case 3 the parameters of this model use N = 30 and seat capacity was set by 5 at each flight. 
Ticket price set only two fare classes, class 1 for the most expensive and class 2 for cheapest. In 
addition, ticket prices for flight 1 set more expensive than flight 2. By using equations developed 
by Chen et al., (2010) and Rusdiansyah et al. (2010), we get the expected revenue $1542. Further, 
this output will be used as target revenue to compute how much risk of failure from the expected 
revenue. The computation result in table 7. 
 
 
 
 
 

p1 p2 p3 p1 p2 p3 p1 p2 p3 p1 p2 p3 p1 p2 p3 p1 p2 p3
0 0 0 0,33   0,33   0,33   0,23   0,23   0,23   0,13   0,13   0,13   0,16   0,16   0,16   0,20   0,20   0,20   0,13   0,13   0,13   
1 200 200 -     -     -     0,03   0,05   0,02   0,03   0,03   0,05   0,06   0,04   0,03   0,02   0,02   0,02   0,01   0,02   0,05   
2 150 150 -     -     -     0,04   0,10   0,06   0,04   0,08   0,04   0,07   0,04   0,01   0,02   0,02   0,02   0,01   0,06   0,06   
3 120 120 -     -     -     -     -     -     0,05   0,05   0,07   0,07   0,04   0,03   0,05   0,05   0,05   0,02   0,07   0,08   
4 80 80 -     -     -     -     -     -     0,06   0,07   0,03   0,07   0,04   0,03   0,05   0,05   0,05   0,05   0,09   0,10   

19<=n<=25 26<=n<=30
class i F1(i) F2(i)

n=0 1<=n<=4 5<=n<=11 12<=n<=18
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Table 7. Risk combination with target revenue $1542 
 

 
Source: VBA Excel Computation 

 
Table 7 show combination of seat allocation againts risk failure to achieve the target. The total 
expected revenue have risk of failure by 30,2%. further experiment conducted by changing seat 
capacity of each flight is 6, so all seat on offer has a total of 12 seats. The optimal expected 
revenue reach to $1817. With the same way, risk combination of failing the target can be seen as 
the following table: 

Table 8. Risk combination with target revenue $1817 
 

 
Source: VBA Excel Computation 

 
 The risk when total seat offered Ck = 10 equal to 30,2% have nearly same with Ck = 12 
equal to 30,4%. This condition shows when the target revenue is an optimal expected revenue, the 
risk of failure is not differ significantly. Figure 3 shows the comparison of this experiment. 
 

 
Figure 3. Comparison Risk of Failure 

 
4 CONCLUSIONS 

This research has developed a computational approach to calculate the optimal value at 
risk policy for the revenue management problem on two paralell flights owned by the same 
airlines. This study use a dynamic capacity control model that is part of the quantity-based revenue 

C1 0 1 2 3 4 5
0 1 1 1 1 1 1
1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 1 1 1 1 1 0.994
4 1 1 1 1 0.993 0.745
5 1 1 1 0.992 0.707 0.302

C2

C1 0 1 2 3 4 5
0 1 1 1 1 1 1
1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 1 1 1 1 1 0.958
4 1 1 1 1 0.95 0.723
5 1 1 1 0.94 0.687 0.304

C2
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management for joint dynamic seat allocation problem including seat allocation risk and also deal 
with passenger choice behavior that attempt to optimize VaR in determining seat allocation 
policies of both flights.   

Given a confidence level α, the proposed method compute possible value at risk results and 
select the best result in accordance with confidence level. This study also proposes an approach to 
reduce the calculation to obtain the optimal value at risk.  

Result of numerical experiment, we obtained the same risks for a single flight and two 
paralell flight when the total seat capacity and parameters offered is the same. Computation of risk 
did not differ significantly when applied the optimal of total expected revenue as revenue targets. 
The calculation of the optimal policy value at risk can be used for other revenue management 
models such as dynamic pricing if revenue targets are known. 
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