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 A big challenge in detecting damage occurs when the sound of a machine 

mixes with the sound of another machine. This paper proposes the separation 

of mixed acoustic signals using Non-negative Matrix Factorization (NMF) 

method for fault diagnosis. The NMF method is an effective solution for 

finding hidden parameters when the number of observations obtained by  

the sensor is less than the number of sources. The real mixing process is done 

by placing two microphones in front of the machine. Two microphones will 

be used as sensors to capture a mixture of four machinery signals. 

Performance testing of signal separation is done by comparing baseline 

signals with estimated signals through the mean log spectral distance (LSD) 

and the mean square error (MSE). The smallest spectral distance between  

the estimated signal and the baseline signal is found in Ŝ2 with an average 

LSD of 1.26. The estimated signal Ŝ2 is the closest to the baseline signal 

with MSE of 1.15 x 10-2. The pattern of bearing damage in the male screw 

compressor can be identified from the spectrum of estimated signal through 

harmonic frequencies as in the estimated signal Ŝ3 which is seen at 11x 

fundamental frequency, 12x fundamental frequency, 15x fundamental 

frequency, and 16x fundamental frequency. 
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1. INTRODUCTION  

The production process in industry can not be separated from the use of machines. One of  

the important machinery and widely used in the industry is rotating machinery. Monitoring of machine 

conditions is very important to do in the industry [1]. The acoustic signal can be used to analyze the condition 

of the machinery beside the vibration signal. The characteristics of each machine can be distinguished from 

the pattern formed [2-4]. Mixing of one signal with another signal is a common condition which can make 

destruction of the original signal. Separation of machinery signals is needed to get a signal that approaches 

the original signal [1, 5]. Blind Source Separation (BSS) is a technique to separate a mixed signal in  

a "blind" state. In this case the "blind" is not knowing the mixing signal, only knowing the mixed signal [6]. 

In the BSS technique, several methods can be used to separate acoustic emission signals. One of them  

is Independent Component Analysis (ICA). By an assumption on the statistical independence between  

the source signals, BSS has been successfully tackled by ICA, which has become a standard statistical 
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method for separation problems [7, 8]. The ICA derivative method, FastICA, has been used by Ghita et al. to 

separate signals both in artificial mixing and in actual mixing. Mixed signals from 4 human voices were 

obtained from 4 sensors. Each source signal in the two blends carried out was reconstructed successfully [8]. 

The same method is also used by Farhat et al. to separate gear signals. Healthy and damaged wheel 

components were identified [5]. Ajami et al. used ICA to identify the condition of a real turbine system.  

The PCA approach is also used to help reduce the dimensions of the data obtained. The results showed that 

the method was effective in identifying damage [9]. The combination of ICA and SVM was proposed by Ji 

and Zhang in the diagnosis and classification of engine damage [10]. The combination of ICA and ensemble 

Empirical Mode Decomposition (EMD) methods succeeded in separating multiple failures on bearings with 

different speed variations [11]. The ICA method can generally separate signals well with fast computing time 

when the number of observations is equal or more than the number of sources [12, 13]. 

One method that can be used to find out hidden parameters when the number of observations 

obtained by the sensor is less than the number of sources is non-negative matrix factorization (NMF).  

This method was proposed by Lee and Seung where a guarantee of signal independence such as the ICA 

method is not needed [6]. The NMF method has been used to separate audio signals [14, 15], vibration 

signals [16, 17], EEG signals [18], and others. The signal mixing process has been done in both artificial 

mixing and real mixing [8]. NMF is used by Liang et al. to decompose spectral and frequency bands that 

indicate bearing damage through vibration signals. Verification of the results of the study was carried out 

with a fault machine simulator with an accelerometer as a sensor [16]. Separation of machine signals with 

real mixing is done by Miao et al. using blind source separation based on second order statistics [19].  

The research object used is two-span rotors. The mixed signal is obtained from 3 vibration sensors. 

Random noise can be separated in that study [19]. Wodecki et al. used the NMF method to identify damage 

to the gear box on the conveyor belt at the real plant. The spectrogram of the vibration signal is used in  

the analysis of the gear box fault [17]. The NMF method can also be combined with neural networks[20]  

and K nearest neighbors[21] for fault diagnosis. The NMF method added by Jiang et al. in the incremental 

broad learning approach (IBL) is more effective than without the addition of NMF in diagnosing damage to  

a three-phase induction motor[22]. The NMF method will be adopted to separate the machinery signals in 

this study. The real mixing process is done by placing two microphones in front of the machine.  

The microphone will be used as a sensor to capture a mixture of machinery signals. Signal representation in 

the frequency domain will be used in signal analysis.  

 

 

2. RESEARCH METHOD 

2.1.  Blind source separation 
Blind Source Separation is a mixed signal separation technique to predict the original signal in an 

unknown condition of the mixing process or mixing matrix A. The information obtained is only a mixed 

signal X. This method of signal separation aims to rearrange the original signal S which has been  

mixed [7, 12]. Here is an equation of the BSS method: 

 

 ( )  ∑ ( )  (   )            

 

   

 (1) 

 

Where S consist of [S1, S2, ... .Sl]
T
. J is the column vector matrix l x 1 (collection of sources),  

x consists of [x1, x2, .... xl]
T
 is sets of l observed signals, A is m x n matrix. m is the number of sensors and it 

contains mixing coefficients bj(t), and n is the number of sources. Equation 1 is a convolution equation in  

the time domain. We should convert it into the frequency domain using a Short Time Fourier Transform 

(STFT) to increase sparsity through equation [13]: 

 

    (    )  ∫  ( )   (    )          (2) 

 

Where  (    ) is window function. In this study, sine window function is used with an overlap of 

50% and the length of the STFT window is 1024. Signals will be converted into the frequency domain by using 

STFT in which each frequency band can be known independently. Equation 1 can be written as follows: 
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2.2.  Non-negative matrix factorization 

In the BSS technique, several methods can be used to separate acoustic emission signals [12, 23]. 

One of them is non-negative matrix factorization (NMF). NMF is an effective matrix factorization method 

for decomposing multivariate data under the boundaries of non-negative components[12]. NMF aims to 

factor the algorithm [V] ≈ [W] × [H] so that it can be reduced in dimensions. V is a mixed signal that will be 

decomposed into a mixing matrix W and sound source H. In the signal separation process, the matrix [V] 

represents magnitude or spectral power of the signal. The matrices W and H are decompositions of  

the spectrogram     
        [14, 15]. The matrices W and H are randomly initialized which have  

non-negative components. The problem of minimization of factoring W and H will be overcome by 

minimizing divergence: 

 

  (    )     
    (4) 

 

In minimizing equation 4, the Itakura Saito divergence where  (    )   (   ̂) is used. The Itakura-Saito 

equation had a statistical solution to the problem of minimizing the non-negative matrix [14]. 
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Where x,y≥0 and    (   ) is Itakura Saito based scalar divergence which measures the closeness 

between  two signals. The cost function based on Itakura Saito is written in equation 6, where   is W, 

H paramaters and  ̂    is the sum of variance. The likelihood distribution is known to be more maximal with 

the iterative process. One method that can be used is the multiplicative update algorithm. The iterative 

process carried out by this method is a process for updating each parameter. The goal is to bring up hidden 

parameters in each channel.  

The likelihood estimation of W and H is based on the Itakura Saito divergence criteria which  

is derived from β divergence when β = 0[12].   is an input in equation 7 and equation 8. The matrix W and H 

will be initialized with non-negative values, where  ̂ =W.H. When initializing W and H are entered in  

the equations, the new W value and H value will be obtained. The W and H matrices will be updated so that 

[ ] ≈ [W] × [H]. The matrices W and H will be normalized then re-iteration step will be applied until reach 

convergence[15]. In this study, the number of iteration used is 500. Wiener filter based on minimum mean 

square error criteria is applied to reconstruct the source signal, after the best likelihood the parameters  

have been found through the iteration process above. Inverse STFT is used to obtain the source signal in  

the time domain. 
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The signal obtained will be transformed into the frequency domain to analyze the spectrum.  

The spectrum is represented by amplitude as a function of frequency. The frequency spectrum is used to 

determine the condition of the engine because the analysis of signals in the time domain is more difficult than 

the analysis of signals in the frequency domain [1, 24]. Fast Fourier Transform(FFT) will be used to get  

the frequency spectrum. The flowchart of the machinery signal separation process can be seen in Figure 1. 

 

 

2.3.  Experimental setup 

A compressor is a device for compressing gas fluid through volume reduction. The compressor 

functions to increase fluid compressibility. GA 37 Rotary screw compressor is an object in this study.  

The maximum capacity of this compressor engine is 10 Bar with 37 kW motor power and 3000 RPM 

rotational speed. In this study, four parts of the compressor machinery will be used as sound sources. S1  

is the signal source located on the motor that is far from the screw compressor, S2 is the signal source located 

on a motor that is close to the screw compressor, S3 is the signal source located on a male compressor screw 
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that is close to the motor, and S4 is the signal source located on a male compressor screw that is far from  

the motor. The location of the source can be seen in Figure 2. 
 

 

 
 

Figure 1. Flowchart of mixed signal separation 
 

 

 
 

Figure 2. Simplified representasion of sound source from the compressor machinery used in this study 
 

 

The data collection is done in two stages, i.e., baseline signal recording and mixed signal recording. 

The recording time is five second. At the baseline signal recording, Behringer XM1800S cardioid type 

microphone is placed at a distance of 5 cm from the sound source. It is assumed that at that distance,  

the sound signal obtained will approach the engine vibration signal on that side. At mixed signal recording, 

two microphones are placed at 90 cm from the sound sources with a distance between microphones is 15cm 

as shown in Figure 3. In this study, Behringer XM1800S microphone used as a sound sensor is connected 

with an XLR cable, while the interface used as an analog to digital data converter is USB Audio Interface. 

The baseline signal recording used 44100 Hz as a sampling frequency with 220500 samples. The sampling 

frequency adjusts to the minimum sampling frequency of the USB audio interface.The downsampling will be 

applied from 44100 Hz to 8000 Hz with the amount of 40000 samples, to accelerate the processing of data. 
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Figure 3. Components used in signal recording with real mixing 

 

 

3. RESULTS AND DISCUSSION  

The recording results from the baseline signal are shown in Figure 4. The spectrum of S1 to S4 have 

different characteristics. The lowest peak amplitude value of the others is owned by spectrum S1 which  

is 2.9x10
-2

 at 594Hz or about 12x the fundamental frequency of the machine. The fundamental frequency  

is obtained from the rotating speed of machine which is around 3000RPM. Based on the baseline signal 

spectrum, the fundamental frequency is 49.56Hz. The peak amplitude of S2 and S4 is also located at 12x  

the fundamental frequency of the machine but in S4 there is a high amplitude of 4.3x10
-2

 which is located at 

543.9Hz or around 11x the fundamental frequency. The high amplitude possessed in the S3 spectrum  

are 6.1x10
-2

 and 4.4x10
-2

 which are located at 790.9Hz or 16x the fundamental frequency and 642.6Hz or 13x 

the fundamental frequency. 

The mixed signal will go through a signal separation process using the proposed method.  

Four estimated signals will be generated from the separation process, where Ŝ1 is an estimated signal from S1, 

Ŝ2 is an estimated signal from S2, Ŝ3 is an estimated signal from S3, and Ŝ4 is an estimated signal from S4.  

The estimated signals are shown in Figure 5.The fundamental frequency of the estimated signals is 49.56Hz. 

This frequency corresponds to the fundamental frequency of the baseline signals. The estimated signal Ŝ1 has 

a peak amplitude of 4.8x10
-3

 at 594.7Hz where the peak amplitude of the baseline signal S1 lies at 594Hz or 

around 12x the fundamental frequency. Based on the overall spectrum estimation, the peak amplitude of  

the signal Ŝ1 is the smallest compared to other signals where the baseline signal S1 also has the same 

characteristics. The estimated signal Ŝ2 has a high amplitude at 11x the fundamental frequency and 12x the 

fundamental frequency while the high amplitude of baseline signal S2 is located at 12x the fundamental 

frequency and 13x the fundamental frequency. Harmonic frequencies with high amplitude of the estimated 

signal Ŝ3 are seen at 11x the fundamental frequency, 12x the fundamental frequency, 15x the fundamental 

frequency and 16x the fundamental frequency, while the baseline signal S3 is located at 12x the fundamental 

frequency, 13x the fundamental frequency, 15x the fundamental frequency and 16x the fundamental 

frequency. The peak amplitude of the estimated signal Ŝ4 is at 12x the fundamental frequency. It is followed 

by the emergence of the amplitude at 13x the fundamental frequency where it is aligned with the S4 baseline 

signal. Based on the results of the separation, there are differences in the location of the peak amplitude and 

amplitude shift at some high frequencies but the spectrum patterns still have the characteristics and 

compatibility with the baseline signals. In this study, the results of the separation were evaluated through  

the mean log spectral distance (LSD) and the mean square error (MSE) shown in Table 1. The lowest LSD  

is found in Ŝ2 which is 1.26 and the lowest MSE value is 1.15 x 10
-2

. It shows that the estimated signal Ŝ2  

is closest to the baseline signal S2. 
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Figure 4. The results of baseline signal recording in frequency domain  
 

 

 

 

 

 
 

Figure 5. The results of separation process in frequency domain 
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Table 1. The performance of separation process 
Signal    ̅̅ ̅̅ ̅    ̅̅ ̅̅ ̅̅  

Ŝ1 1.39 1.34 x 10-2 

Ŝ2 1.26 1.15 x 10-2 
Ŝ3 1.33 1.93 x 10-2 

 

 

The vibration signal from the accelerometer is used to verify the machinery condition in this study. Based on 

reports from vibration analysis experts in the industry [25], the compressor parts that have significant bearing 

damage are S3 and S4. One of the results of vibration analysis can be seen in Figure 6. 
 

 

 
 

Figure 6. Vibration analysis for S3 with bearing fault 
 

 

In the vibrational spectrum, the fundamental frequency is 49.375Hz.This bearing damage location 

can be seen from the appearance of high amplitude on the harmonic frequencies of bearing defects such  

as 546.25Hz or around 11x the fundamental frequency, 595.625Hz or around 12x the fundamental frequency, 

645.625Hz or around 13x the fundamental frequency, 741Hz or around 15x the fundamental frequency  

and 794.75Hz or around 16x the fundamental frequency. Vibration on S3 and S4 are higher than other 

machines, which are 6.68mm/s and 9.36mm/s. Indications of significant damage have not been found in S1 

and S2. Vibration on S1 and S2 is lower than other machines, which are 3.72mm /s and 3.50mm/s. Based on 

the ISO 10816-vibration severity standard, these values are still within tolerable limits while the vibrations on 

S3 and S4 have entered into unacceptable conditions and required bearing maintenance. 

The pattern of bearing damage from the separation of the signals shown in Figure 7. There are 

differences in the location of the peak amplitude in Figure 6 and Figure 7. In the vibrational spectrum S3,  

the peak amplitude of 3.13mm/s lies in 595.625Hz or around 12x the fundamental frequency while the peak 

amplitude on the acoustic spectrum S3 lies in 545.2Hz or around 11x the fundamental frequency.  

In the acoustic spectrum of Ŝ3, the fundamental frequency is 49.56Hz. Bearing defect on S3 can still  

be known based on harmonic frequencies, such as 545.2Hz or around 11x the fundamental frequency, 

594.7Hz or around 12x the fundamental frequency, 743.7Hz or around 15x the fundamental frequency,  

and 793Hz or around 16x the fundamental frequency. 
 

 

 
 

Figure 7. Acousic spectrum of Ŝ3 
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4. CONCLUSION  

Separation of mixed signals from four machines based on NMF method with real mixing was done 

in this study. The estimated signal Ŝ2 is the closest to the baseline signal with the LSD of 1.26 and the MSE 

of 1.15 x 10
-2

. Acoustic signals from each part of the compressor engine have different characteristics. Based 

on experts in the industry, bearing damage is shown in male screw compressors S3 and S4 through high 

amplitudes and harmonic frequency patterns in both vibrational and acoustic signals. Based on the ISO 

10816-vibration severity standard, maintenance and preparation of bearing reserves are required. The severity 

can be known from the vibration signal through its velocity. In this study, acoustic signals are used to 

determine the location of damage. The acoustic signal has not been used to determine the severity. Some 

experiments are needed to analyze the severity which will be the focus of further research. Based on  

the separation results, a shift in the location of the high amplitude occurs in some estimated signals. 

Nevertheless, the pattern of the spectrum of each signal and an indication of the damage can be identified. In 

future research, differences in bearing patterns such as outer race defects, inner race defects, and others will 

also be analyzed 
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